

Improved Extrusion Technology for the Production of Batteries – Enhancing Performance and Reducing Costs. A Current and Future Perspective Eike Wiegmann, Laura Helmers, Arno Kwade 13.11.2018

Extrusion in LIB-Production

Universität Braunschweig

Eike Wiegmann, Laura Helmers | 13.11.2018 | Improved Extrusion Technology for the Production of Batteries | Slide 2

[1] Matthias Harmann; Projektvorstellung KonSuhl ,4. Forschungskolloquium in Münster 2018

Extrusion in LIB-Production

Eike Wiegmann, Laura Helmers | 13.11.2018 | Improved Extrusion Technology for the Production of Batteries | Slide 3

[1] Matthias Harmann; Projektvorstellung KonSuhl ,4. Forschungskolloquium in Münster 2018

Process Parameter Effects on LIB (Anodes)

Particle size

- High rotational speed \rightarrow higher shear rates \rightarrow better dispersion
- High rotational speed \rightarrow shorter retention time \rightarrow worse dispersion

Particle size

- High rotational speed \rightarrow higher shear rates \rightarrow better dispersion
- High rotational speed \rightarrow shorter retention time \rightarrow worse dispersion

Rheology

- Shear dilutive | viscoelastic liquid
- Higher shear stress → less cross-linking + network weakening

Adhesive strength

- Adhesive caused collapse \rightarrow agglutination of SBR
- Smaller particels → higher specific surface + more contact points → improved adhesive strength

Adhesive strength

- Adhesive caused collapse → agglutination of SBR
- Smaller particles → higher specific surface + more contact points → improved adhesive strength

Electric conductivity

- Correlation with particle size
- Improved dispersion \rightarrow homogenous allocation of carbon black

adhesive strength

• Adhesive caused collapse \rightarrow agglutination of SBR

Influence of rotational high rotational speed

- + Processability
- + Adhesive strength

Conductivity

- correlation with particle size
- Increasing dispersion \rightarrow homogenous allocation of carbon black

Particle size

- Higher particle conzentration → stress number and intensity increase
 → smaller particles
- Minimal particle size caused by stabilization

complex shear stress τ^* [Pa]

Particle size

- Higher particle conzentration → stress number and intensity increase
 - \rightarrow smaller particles
- Minimal particle size caused by stabilization

Rheology

- Viscoelastic solid body for c_m > 0,60
- Stability against seggregation
- High solid content → low mobility, stress number and intensity increase → higher viscosity

Adhesive strength

- Mainly adhesive caused collapse
- Smaller particles → bigger specific surface an more contact points
 → better adhesive strength
- Segregation of inactive material due to the low solid content→ lower adhesive strength

The structure of the st

Adhesive strength

- Mainly adhesive caused collapse
- Smaller particles → bigger specific surface an more contact points
 → better adhesive strength
- Segregation of inactive material due to the low solid content→ lower adhesive strength

Electric conductivity

- Correlation with particle size
- Segregation of inactive material due to the low solid content→ lower adhesive strength

- Influence of high solid content
- Reducing drying costs ÷
- Adhesive strength sive strength
- Conductivity ÷
 - ectric conductivity
 - **Processability**
 - correlation with particle size

Outlook: High Solid Content c_m > 60%

Outlook: High Solid Content c_m > 60%

low viscous

Benefit:

- No binder segregation
- Improved mechanical properties
 - High cycle stability
 - \rightarrow range improvement
- Further reducing drying time/costs

Challenge:

- New coating system required
- Active material can be damaged
 - \rightarrow minimize shear stress

Improved Extrusion Technology for the Production of Batteries – Enhancing Performance and Reducing Costs. A Current and Future Perspective Eike Wiegmann, Laura Helmers, Arno Kwade 13.11.2018

All-solid-state battery

Requirements for All-Solid-State Processing

- Liquid electrolyte is replaced by a solid polymer-salt mixture
- No desired porosity like in classic Li-Ion batteries, goal is zero porosity
- Li-ion transport is dependent on polymer chain movement
- High homogenization degree is needed for high ionic conductivity
- Shear stress has to be minimized as it causes chaindegradation
- Solvent free process chain is used

Process Parameter Effects on Polymer Properties

Institute for Particle Technology

Batch Process for ASSB Production

kneading unit

- Time and cleaning intensive
- Low level of automation
- Higher personnel and energetic costs

Batch Kneading Process for ASSB

- 1. Homogenization of PEO particles
- 2. Plasticizing PEO melts and flow resistance decreases
- 3. Mechanical degradation of PEO

Batch Kneading Process for ASSB

- Specific ionic conductivity increases with rising enery input through homogenization and chain-degradation
- For W_k > 2000 kJ/kg degraded polymer chains probably crosslink and the reduced chain mobility cause a decreased ionic conductivity

Continuous Process Chain for ASSB Production

- Through solvent free process drying unit is saved
- For direct calendering thin and broad extrudates are desired
- Utilization of same process route for cathodes and separator

Influence of Temperature on Specific Energy Input

- Homogenization of solid PEO particles
- 2. Plasticizing of molten PEO causes decrease in flow resistance
- 3. Thermal degradation and solidification of PEO

Influence of Temperature on Specific Energy Input

- Lithium salt works plastifiing
- For the high retention screw configuration the temperature impact on the specific energy input is neglectalbe
- High back pressure leads to increased specific energy input

Influence of Operating Temperature

Eike Wiegmann, Laura Helmers | 13.11.2018 | Improved Extrusion Technology for the Production of Batteries | Slide 35

EINE EINRICHTUNG IM NFF

Influence of Screw Config. on Specific Energy Input

- Use of kneading elements leads to temperature dependency
- High shear stress causes thermal degradation for a temperature > 100 °C

Institute for Particle Technology

Influence of Screw Config. on Specific Energy Input

Influence of Extrusion Parameters on Ionic Conductivity

- Higher retention time and higher shear stress lead to increased homogenization
- High shear stress and high retention time cause thermal degradation for 125 °C

Conclusions

 For kneading and extrusion process the polymer passes three phases depending on the specific energy input

- Batch kneading: higher energy input increases ionic conductivity
- Thermal degradation for W > 2000 kJ/kg

- Extrusion process: low retention time leads to low homogenization
- High retention time and high shear stress cause degradation

EINE EINRICHTUNG IM

NFF

Conclusions

 Process window limited through thermal and mechanical degradation

 Continuous extrusion process: specific energy input controllable through screw configurations causing a specific retention time

- Solvent free processing of separator in the extruder is possible
- Reached ionic conductivities are slightly lower

EINE EINRICHTUNG IM

NFF

Thank you for your attention

.... for the support by

Bundesministerium für Wirtschaft und Energie

Improved Extrusion Technology for the Production of Batteries – Enhancing Performance and Reducing Costs. A Current and Future Perspective Eike Wiegmann, Laura Helmers, Arno Kwade 13.11.2018